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Abstract. The critical exponents of a non-ideal polymer chain attached by one of its ends 
to an impenetrable interacting surface are found to first order in the small parameter 
E = 4 - d where d is the dimensionality of the space. A comparison of the behaviour of a 
chain interacting with an impenetrable and a penetrable surface is given. 

1. Introduction 

In the Gaussian model (Yamakawa 1971) the probability Po(Ri,  R j ;  i, j) of the ith and 
j th  units of an ideal polymer chain being found at the position vectors Ri and Ri is 
given by 

Po(Ri, R j ;  i , j )  = [ d / 2 ~ 1 ~ ( j - i ) ] ~ ’ ~ e x p [ - d ( R ~ - R , ) ’ / 2 ( j - i ) 1 * ]  j > i  (1.1) 

where d is the dimensionality of the space and 1 is the length of the unit of the chain. 
The study of polymers at interfaces requires us to generalise (1.1) so that both the 
dimensionality of the surface and the dimensionality of its orthogonal complement be 
explicitly considered. Previously we have provided this generalisation (Kosmas 1985) 
for a penetrable surface as 

Po(Ri,  R j ;  i, j )  =(d/2m12)d11’2 exp[ -d (RII , , -R i , , j )2 /2 ( j - i )12 ]  

x (d/2~1’)~1’’ exp[-d(R,,, - R,,j)2/2(j- i)12] (1.2) 
where dli is the surface dimensionality and d, is that of its orthogonal complement, 
d = dli + d,, and Ril and R,  are the component vectors of R parallel and perpendicular 
to the surface. For a non-ideal chain, the excluded volume interactions between any 
pair (i, j )  of units have to be included and they can be represented in a perturbation 
theory scheme by the d-dimensional delta function pseudopotential u,Gd(Ri - Rj)  
(Yamakawa 1971). In the d-dimensional space the presence of the surface of 
dimensionality dll < d interacting with the polymeric units give rise to another potential 
of the form u , G ~ - ( R , , ~ )  where the Gd‘ function obtains non-zero values only when the 
units are close to the surface. The interaction parameters U, and U, are proportional 
to the binary cluster integrals for the mean potentials between two units and a unit 
and the surface respectively and they are temperature dependent. 

For the case of the penetrable surface (Hammersley et a1 1982, Ishinabe 1984), we 
have shown that the study of the chain with both kinds of interactions corresponds to 
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a problem where both d and d ,  have critical values (Kosmas 1985). Two combinations 
of the interaction parameters and the molecular weight govern the behaviour of the 
chain. One is u , N ( ~ - ~ ) / *  for the excluded volume interactions (Kosmas 1981a) and 
the other is u,N( ' -~- ) / '  for the interactions with the surface (Kosmas 1981b). From 
the first combination it is seen that for the dimensionality d, 4 is a critical value above 
which, in the limit N + w ,  u , N ( ~ - ~ ) ' ~  and therefore excluded volume effects are 
negligible. From the second combination the critical value for d ,  comes out to be 2. 
For d ,  > 2 ,  u,N(*"~)'' and the interactions between the surface and the polymer are 
negligible. The probability distribution P{Ri} for the N positions Ri ( i  = 1,2, . . . , N )  
of the polymeric units which incorporates both critical dimensionalities is 

(1.3) 

For E < 0 both interactions yield negligible contributions, while in the limit E + 1 the 
three-dimensional chain interacting with the (x, y )  plane is recovered. The solution 
of the problem to several orders in E describes the chain properly at fictitious dimension- 
alities and helps in understanding the characteristics of the solution of the problem at 
the real dimensionalities d = 3, 2 or 1 (Kosmas 1982). The detection of new macro- 
scopic states of the chain is possible, for example, in this way. These states are 
characterised by specific values ( u f ,  U,*) of the interaction parameters which can be 
determined from second-order perturbation theory (Kosmas 1985). The critical 
exponents of the macroscopic properties at the various states of the chain depend on 
U,* and UT, and once U,* and U $  have been found, the exponents can be determined 
to first order in E from first-order calculations. For the case of a chain fixed with one 
of its ends at a penetrable surface, the states and the corresponding values of ( u t ,  U,*) 
have been previously found and are quoted in table 1. In the table we also quote the 
values of the exponents of the following properties: 
the total number of configurations 

C - NY-' y = 1 - U , * S 2 U T  ( 1 . 4 ~ )  

Table 1. The various states and the corresponding values of the interaction parameters 
and the critical exponents for the two cases of a chain interacting with a penetrable and 
an impenetrable surface. 

~~~ ~ ~~ 

Desorption 

volume 
Excluded plus excluded 

Interaction Ideal Desorption volume 

UT 
U,* 

Penetrable y 
surface P 

Yll 
Y L  

Impenetrable y ,  
surface P 

YII 
Y* 

0 
0 
1 
-2 + ( E / 2 )  
E / 2  
0 
1 
- 2 + ( E / 2 )  
E l 2  
0 

~ / 1 6  
0 

-2+  ( ~ 1 4 )  

0 
1 + ( 3 ~ / 1 6 )  

1 + ( E l 8 1  

E l 2  

- 2 + ( E / 4 )  
5818 

~ / 1 6  

~ / 1 6  
3818 
1 - ( c / 4 )  
- 2 - ( E / 2 )  
- E l 4  
-3818 
1 - ( 3 ~ / 1 6 )  
- 2 - ( E / 2 )  
--El8 
-58116 
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the number of configurations of rings 

U-N’ p = -2 + (&/2)  - 2 ~ :  - 414: (1.46) 

the number of loops with both ends of the chain on the surface 

CII - N Y l l - 1  Yll= (&/2)--2u,* ( 1 . 4 ~ )  

and the number of configurations with their second ends on the axis perpendicular to 
the surface 

C, - NY,-’ y =-U* a .  (1.4d) 

2. Calculations of the critical exponents for a confined chain 

In this work we generalise our previous treatment of the penetrable surface to an 
impenetrable surface. This is a non-trivial generalisation since the intuitive notion of 
the impenetrable surface can only be represented by a hyperplane of dimensionality 
d - 1 which divides the d-dimensional space into disjoint regions. We construct a 
model which incorporates both the impenetrable hyperplane and the interacting surface. 

The probability distribution Po, equation ( l . l ) ,  for a free chain is a product of d 
one-dimensional probabilities along the d perpendicular directions, so that each one 
of them can be separated as 

Po(Ri, Rj; i , j )  = [ d / 2 ~ l ~ ( j - i ) ] ‘ ~ - ’ ’ / ~  e~p[ -d (R: -R j )~ /2 ( j -  i)l’] 

x [ d / 2 d 2 ( j  - i)]”* exp[-d(Zi -q) ’ /2( j -  i)l’I. (2.1) 

Zi are the components of the position vectors Ri along the specific Z axis while RI 
represent the rest components of R,. In the d-dimensional space the equation Z = O  
represents the ( d  - 1) -dimensional hyperplane which separates the d-dimensional space 
into two halves, one with Z 0 and the other with Z < 0. For a confined chain belonging 
to the half-space Z 3 0 and for the absorption boundary conditions according to which 
the derivative of the probability with respect to Z vanishes on the plane Z = O  
(Chandrasekhar 1943, Simha et a1 -1953, Kosmas 1981b), an image term has to be 
added so that the corresponding probability becomes 

Pc,(Ri, Rj; i , j ) = [ d / 2 d 2 ( j -  i)](d-’)’* exp[-d(RI-R;)*/2(j- i)12] 

~ [ d / 2 d ~ ( j - i ) ] ” ~ { e x p [ - d ( Z ~ - Z , ) ~ / 2 ( j -  i ) 1 2 ]  

+exp[-d(Zi + 4 ) 2 / 2 ( j  - i)12]} . 
This probability distribution can describe properly the fact that all polymeric units lie 
in the positive 230 half-space, and in order to study a chain in the presence of an 
impenetrable surface the probability P,, , equation (2.2), of the confined chain, instead 
of the probability Po, equation ( l . l ) ,  of the free chain has to be employed. For d 2 3, 
the interacting surface is a subset of the impenetrable hyperplane, dll s d - 1, but in 
the limit of d + 3 ( E  + 1) the impenetrable hyperplane of dimensionality d - 1 + 2 and 
the interacting surface of dl, = 2 coincide and both go to the (x, y )  plane. The real 
three-dimensional space with a confined chain interacting with the ( x , y )  plane is 
recovered in this way. The present model differs from that of Bray and Moore on 
semi-infinite systems where the one-dimensional Z potential is used to describe the 
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interactions with the surface. Though both models can describe properly three- 
dimensional systems of interest the model of Bray and Moore does not incorporate 
the adsorption critical dimensionality d ,  = 2.  Of course the same results have to come 
out from the two models for the case U, = 0 (special transition of Bray and Moore), 
where a confined non-ideal chain without interactions with the impenetrable surface 
is described. 

Second-order calculations for the case of impenetrable surface show that the 
presence of the surface does not change the universal character of the fixed points. 
The values U: and UT (table 1) are the same for the two cases of the penetrable and 
the impenetrable surfaces. This permits the determination of the critical exponents of 
the macroscopic properties of the confined chain to first order in E from first-order 
calculations. The following diagrammatic expressions are taken for the properties 
under study: 

c = ~ r ( 1 - u a ~ c - 2 u e T ‘ )  ( 2 . 3 ~ )  
U = p f ( ( 2 / N d ’ 2 ) - ~ , ~ - , - 2 ~ e ~ Y )  ( 2 . 3 b )  

c I I =  C L O N ( ( ~ / N ~ ~ ’ ~ ) - U ~ ~ _ ~ I - ~ U ~ ~ ~ , )  (2 .3 c )  

c, = /LON( ( 1/ Ndl1’*) - U a k c 1  - 2 u e r  ( 2 . 3 d )  
The diagrams in equations ( 2 . 3 )  represent configurations of the chain with a knot 
coming from the action of the delta functions. The U, diagrams have a knot between 
the polymer and the surface while the U, diagrams have a knot between two polymeric 
units. The subscripts on the diagrams denote the corresponding properties. The forms 
and the finite values of the diagrams are written in table 2.  An extra factor of 2 
produced for each U, term in all orders comes from the different normalisation factors 
for the confined and the unconfined chains. It is irrelevant for the determination of 
the values U: and U,* and the critical exponents, so it can be absorbed with the rest 
( d / 2 d 2 )  constants in U. Using the values of the diagrams in equations (2 .3)  we take 

C - [1+ (-U,+ 324,) In NI = N y - ’  ( 2 . 4 ~ )  YI = 1 - U: + 3 u :  

Table 2. Forms and values for the first-order diagrams for d = 4 and d, = 2. 

oc = 2 1; d i ( l / i )  = 2 In N = ( 2 ’ / N )  [: d i  l / [ i (N-  i)] = ( 8 / N 2 )  In N 

= - ( 2 / N )  In N 

= 1: d l  I:-‘ di[/-’(N - / ) - I +  ( /+4 i ) -”ZI -3 ’2 (N-  /)-‘I = - (1/2N) In N 
U C L  
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U - 2[(1/ N'4-""2) + ( - 2 u , - 4 u e )  In N /  N 2 ]  = 2 N P  p = -2 + ( ~ / 2 )  - 2u,* - 4 ~ :  
(2.4b) 

( 2 . 4 ~ )  

C,-[ (I /N)+(-U,+U,)  In N / N ] =  NY--' yI = -U,* + UT ( 2 . 4 d )  

thus obtaining the values of the corresponding exponents which we quote in table 1 
for the various states of the confined chain. 

~ , ~ - 2 [ ( 1 / ~ ~ ~ - ~ ) ' ~ ) + ( - 2 ~ , + 2 u , )  In N / N ]  = ~ N ~ I - '  711 = (E/2) - 2u: + 2u: 

3. Conclusions 

The present results, though first order in the small parameter E ,  can reproduce the 
general characteristics of the behaviour of the chain also taken from other methods. 
It was found that on increasing the attraction between the chain and the interface a 
transition takes place from a three-dimensional behaviour where the chain mainly 
belongs to the solution to a two-dimensional behaviour where the chain is adsorbed 
on the interface (Lax 1974, Mark and Windwer 1974, Whittington 1975). The results 
of the present work lead to similar conclusions. The values of the critical exponents 
for the states with U, = 0, where there are no interactions between the impenetrable 
surface and chain, decrease on increasing the dimensionality of the system (decreasing 
E ) .  This means that the two-dimensional behaviour is characterised by larger values 
of exponents than the three-dimensional one. The same trend comes from the depen- 
dence on the interaction parameter U, which expresses the interactions between the 
polymer and the surface. Larger values of U, mean greater repulsion between the 
monomers and the interface. The exponents become smaller as U,* increases which 
again means that on increasing the repulsions between the surface and the monomers 
a change from a two-dimensional-like behaviour with larger exponents to a three- 
dimensional one with smaller exponents takes place. 

Higher-order calculations in the small parameter E would yield better estimates for 
the critical exponents at the dimensionality d = 3 where E is extrapolated to the value 
1 .  Though the exponents taken from the present first-order calculations can be 
paralleled with the values taken from other methods, these exponents characterise the 
various states of the chain and they do not depend explicitly on the temperature T or 
the nature of the solvent, the polymer and the substrate. This permits a comparison 
with the results from other techniques even if they refer to extreme temperature values 
like T=co (Eisenriegler et al 1982). The value, for example, of the exponent yI for 
the three-dimensional problem ( E  = 1) at the expanded-desorbed state is estimated 
from relation ( 2 . 4 ~ )  to be yI = 0.81 and it is in accord with the values of yI found to 
be in the range 0.68-0.71 (Lax 1974, Barber et al1978, Eisenriegler et al1982). Similarly 
from relation ( 2 . 4 ~ )  711 is found to take the negative value yll = -0.125 and compares 
with the value of yll in the range from -0.56 to -0.39 found before. 

The presence of the impenetrable plane, even for the case of U, = 0 (no interactions 
with the surface), changes the exponent y of the case of a penetrable surface to the 
exponent yl. The latter is taken from (2.40) to be yl = 1 +3uT (U, = 0) and it agrees 
with the value found by Bray and Moore by means of the n-vector model ( n  + 0) and 
by Freed by means of direct renormalisation group theory. Other symbols used before 
for the special case U ,  = 0 are rfp and yfi" (Bray and Moore 1977) and yLa and y$, 
(Eisenriegler et al1982). The comparison of the two values yI = 1 + 3uT and y = 1 + 2 u f  
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is of some interest because it expresses the influence of impermeability. We see that 
yl> y and this agrees with the inequality taken from the generally accepted values 
yI = 1.44> y = 1.17 (Eisenriegler et a1 1982, Domb 1969). In the present model the 
two values yI = 1 +3u,* and y = 1 + 2u,* correspond to the region of the adsorption- 
desorption phase change where U, becomes negligible. This change has been reported 
to occur at different temperatures for the cases of impenetrable and penetrable surfaces 
(Hammersley et a1 1982). 

The comparison of the values of yI for the various states is also in accord with the 
results of Eisenriegler et a1 who find that 71 = 1.44 > 1 for U, = 0 and yl = 0.69 < 1 for 
U,> 0. These values compare well with the values taken from yl = 1 + 314: - U,*, being 
yl = 1 + A >  1 for U: = 0 and U: = ~ / 1 6  (non-interacting expanded chain) and yl = 
1 -&< 1 for U: = 3e/8 and U: = ~ / 1 6  (desorbed expanded chain). 

The knowledge of the behaviour of a single chain is the initial step towards studying 
more complicated problems related to polymers at interfaces, like adsorption isotherms 
or the stability of colloids (Theodoor and Overbeek 1982). The dependence given in 
the above analysis on both solvent quality (U,) and the intensity of surface interactions 
(U,) as well as the comparison between penetrable and impenetrable surfaces provide 
the bases for a detailed analysis and a better understanding of the role of the solvent 
and the substrate in such phenomena. 
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